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1 Introduction

In this study we propose to measure the asymmetry of the vector bosons pro-
duced in transversely polarized proton collisions at STAR. First, we focus on
the W bosons decayed into a lepton pair (W± → e±νe). However, most of
the developed formulae can be used in the measurement of Z boson asym-
metry, and we will consider this case later. From the measured asymmetry
it is possible to verify theoretical expectations about the sign change of the
Sivers function in Drell-Yan and SIDIS interactions:

fSIDIS
q/h↑ (x, k⊥) = −fDY

q/h↑(x, k⊥). (1)

The single spin asymmetry (SSA) AN for the W bosons and the lepton
l from the W decay has been derived in [2, ?]. It is parametrized based on
the fits of SIDIS data and given as a function of direction and transverse
momentum. For the case of W we have:

AW
N = AW

N (yW , φW , qT ) ≡ AN(y, φ, pT ) = AN(Ω, pT ), (2)

where Ω = {y, φ} is simply used as a shorthand for the direction of the
particle in the lab frame. Similarly, for the lepton the expectated asymmetry
depends on the direction of the lepton and its transverse momentum:

Al
N = Al

N(ηl, φl, pT ) ≡ AN(y, φ, pT ) = AN(Ω, pT ) (3)

2 Experimental Viewpoint

For the SSA measurements we are interested in the proton interactions
p↑/↓p → W± → e±νe in which the spin direction of one of the protons is
irrelevant, i.e unpolarized protons. In the experiment we can separately
measure full and differential cross sections for spin-up (σ↑), spin-down (σ↓),
and unpolarized (σ0) interactions which are related as:

σ↑ = σ0(1 + AN), (4)

σ↓ = σ0(1− AN). (5)

In the following we assume that the polarization vector does not significantly
deviate from the vertical direction given by the normal unit vector ~n along
the vertical y axis so, the notation is P ≡ ~P · ~n. We also assume the same
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magnitude of the polarization vector for spin-up and spin-down bunches, i.e.
P = P↑ = P↓. For unpolarized cross section σ0 ≡ (σ↑+σ↓)/2 the asymmetry
AN is expressed as:

AN =
σ↑ − σ↓
σ↑ + σ↓

. (6)

The number of recorded events in which the particle is produced with
momentum pT at angle Ω is:

dN↑/↓
dΩdpT

(Ω, pT ) = L↑/↓
dσ0

dΩdpT
(Ω, pT )ε(Ω, pT )

(
1± AN(Ω, pT )P

)
, (7)

where detection efficiency ε does not depend on the spin direction of the
interacting proton. In fact, individual events can be tagged by the nominal
spin of colliding protons. We thus can bin all collected data in four bins N↑↑,
N↑↓, N↓↑, and N↓↓. For the SSA measurement the polarization of one of the
beams is ignored by combining the yields with opposite spins, e.g.

N↑ ≡ N↑0 = N↑↑ +R 0↑
0↓
N↑↓, (8)

N↓ ≡ N↓0 = N↓↑ +R 0↑
0↓
N↓↓, (9)

where re-weighting factor R 0↑
0↓

addresses a possible relative difference in the

spin-up and spin-down intensities of the other beam. Studies have shown
that R 0↑

0↓
≈ 1 with good precision.

We bin our data sample in three observable variables {y, φ, pT} with cen-
ter and width of the i-th bin being {yi, φi, pT,i} and {∆yi,∆φi,∆pT,i} ≡
{∆Ωi{yi,∆φi},∆pT,i} ≡ ∆i respectively. The number of events in each bin,
Ni, is calculated by integrating both sides of (7) within the bin:

N↑/↓,i =

∫
∆i

dN↑/↓
dΩdpT

dΩdpT . (10)

In that bin we assume the average value:

AN,i =
1

∆i

∫
∆i

ANdΩdpT , (11)
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and similarly for the cross section (σ0,i) and efficiency (εi). Finally, for the
yields in each bin we can write:

N↑/↓,i = L↑/↓σ0,iεi∆Ωi∆pT,i (1± AN,i(Ω, pT )P ) (12)

The spacial distributions of the physical asymmetry and the cross sections
are the same for the spin-up and spin-down interactions with respect to
the spin direction. We can use this fact to easily get rid of the quantities
of no interest in (12). This is achieved by constructing geometric means√
N↑(φi)N↓(φi + π) and

√
N↑(φi + π)N↓(φi) of the yields

N↑(φi) = L↑σ0(φi)ε(φi)∆Ωi∆pT (1 + AN(φi)P ) (13)

N↑(φi + π) = L↑σ0(φi + π)ε(φi + π)∆Ωi∆pT (1 + AN(φi + π)P ) (14)

N↓(φi + π) = L↓σ0(φi + π)ε(φi + π)∆Ωi∆pT (1− AN(φi + π)P ) (15)

N↓(φi) = L↓σ0(φi)ε(φi)∆Ωi∆pT (1− AN(φi)P ) (16)

Using the relations for the asymmetry and cross section AN(φi + π) =
−AN(φi), σ0(φi + π) = σ0(φi) we get for AN

AN,i =
1

P

√
N↑(φi)N↓(φi + π)−

√
N↑(φi + π)N↓(φi)√

N↑(φi)N↓(φi + π) +
√
N↑(φi + π)N↓(φi)

(17)

3 Correction for Background

In this analysis an optimal set of cuts is applied to select signal enriched
events without significant loss in the final statistics. The final yields include
some fraction of background events fB which along with the signal asymme-
try contribute to the measured asymmetry AN . In order to extract the signal
asymmetry we decompose AN as following:

AN = fsigA
sig
N + fBA

B
N , (18)

with fsig = 1 − fB. The last term in (18) may include contributions from
various backgrounds which will be discussed later. The background fractions
and asymmetries have to be estimated in order to extract the final asymmetry
of the signal:

Asig
N =

AN + fBA
B
N

1− fB
(19)
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4 Sivers Sign Change Extraction

A binned likelihood method can be used to check the sensitivity of our data
to the sign of the Sivers function. A direct way of doing this is to compare
the measured asymmetry (17) with background corrected expectations from
(18). The signal asymmetry Asig

N in this case directly comes from the model
predictions (2) or (3). The simplest likelihood function can be constructed
as a product of gaussian terms over all bins:

L =
∏
i

G(AN,i, σAN,i
;Asig

N,i). (20)

Alternatively, the Sivers sign can be extracted from the Poisson probabilities
of measured given the expected yields.

L =
∏
i,↑,↓

P (Ni;N
sig
i +Bi). (21)

While this method is more “classic” it requires the explicit knowledge of lu-
minosity, unpolarized cross section, and efficiencies. These values are needed
to calculate the expected number of events using (12). The two methods
are expected to give consistent results. However, the difference can be more
perceptible when systematic effects are taken into account.

5 Reconstruction of W

6#»ET = −
∑(

#»

Ee +
#»

E jet +
#»

Euncl

)
6 Preliminary Sensitivity Studies

In 2011 transversely polarized proton-proton beams were brought into colli-
sions at STAR with a center of mass energy of 500 GeV . In this regime the W
is expected to have a relatively small PT ∼ 2 GeV as confirmed by a Monte-
Carlo simulation in Figure 1. We use PYTHIA 6.8 to simulate W± → e±νe
to the LO with unpolarized beams. Expected kinematic distributions of the
lepton coming from the W decay is shown in Figure 2.

Most of the recoil tracks in the BARREL region are expected to carry a
very small fraction of the energy as shown in fig. 3.
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Figure 1: Expected distribution of the transverse momentum of the produced
W boson, PW
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Figure 2: W-mass; polar angles and pseudo rapidity distributions of the
produced W, the decay leptons and the recoil tracks.
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We can use MC to correct for the missing PT in the recoil tracks due to the
limited acceptance of the STAR detector. Such a procedure will introduce a
model-dependent systematic which will grow with the value of the correction.

We estimate the statistical power of the AN measurement for an inte-
grated luminosity of 300 pb−1. As a basis we use the total W± and Z0 yields
observed at STAR in Run 9. The W and Z candidate events, Nobs, along
with the backgound numbers, Nbkg, are borrowed from the earlier STAR
analysis [1] that reported the production cross section using ≈ 13 pb−1 of
inegrated luminosity:

NW+ = 496− 37 = 459,

NW− = 148− 26 = 125,

NZ = 13− 0 = 13.

To reflect the expected increase in the integrated luminosity we scale the
above numbers a factor ≈ 23. In order to illustrate the sensitivity of the
future measurement to the non-vanishing W and Z AN we calculate the rel-
ative yields in bins of the boson rapidity from the MC sample. The expected
statistical power of AN in bins of W rapidity is shown in Figure 4 for W+

and W− respectively compared with theoretical prediction from [2].
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(a) W+ (b) W−

Figure 4: Expected statistical uncertainties for measured asymmetry AN of
W+ (a) and W− (b) decaying leptonically at STAR as a function of the
boson’s rapidity.
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